
software modularity group

Gregor Kiczales

University of British Columbia
Xerox PARC

2 UBC software modularity group

a few previous “big waves”
• procedural programming

& block structure
• static typing
• object-orientation

and some of their key properties
• intuitive
• efficient
• profound and incremental

paradigms
• school of: organization design, separation of

concerns, abstraction, information hiding…

3 UBC software modularity group

object-orientation

• model world as objects
• classify objects into inheritance hierarchy

analysis design programming

• trace-ability
• separation of concerns

– within each level
– across the levels

objects all the way through

*Figure

Point

getX(): int
getY(): int
setX(int)
setY(int)

Line

getX(): int
getY(): int
setX(int)
setY(int)

2

FigureElement

a simple figure editor

4 UBC software modularity group

blocks, layers & now hierarchies have limits

• synchronization, access control, accounting,
scheduling, performance optimization, power
management, logging, context dependence…

• crosscut blocks, layers, and hierarchies

classic sources of complexity in embedded systems

vm_fault

vm_pager_getpages

vnode_pager_getpages

ffs_getpages

ffs_valid

ufs_bmap
ffs_calc_size

…

…VM module

FFS module

Point

getX(): int
getY(): int
setX(int)
setY(int)

Line

getX(): int
getY(): int
setX(int)
setY(int)

Figure *

2

FigureElement

tracking when objects move in the
simple figure editor

2 prefetching modes in Free BSD

5 UBC software modularity group

aspects
• aspects are crosscutting units

analysis design programming
aspects (& objects & procedures) all the way through

when elements
move

aspect MoveTracking {

... 10 loc ... }

detect & optimize
sequential access

aspect SeqPrefetching {

... 10 loc ... }

* FigureFigure Element

Point Line
2

getX(): int
getY(): int
setX(int)
setY(int)

getX(): int
getY(): int
setX(int)
setY(int) MoveTracking

6 UBC software modularity group

big steps in software development

• not just technology
– languages, tools

• not just work practice
– methods, books, management

• synergistic combination of both
– intuitive, efficient, profound, incremental
– procedural programming and related practices
– OO programming and related practices
– <fill this space> ideas that bridge the

whole process

	a few previous “big waves”
	object-orientation
	blocks, layers & now hierarchies have limits
	aspects
	big steps in software development

